If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+300x-15000=0
a = 1; b = 300; c = -15000;
Δ = b2-4ac
Δ = 3002-4·1·(-15000)
Δ = 150000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{150000}=\sqrt{10000*15}=\sqrt{10000}*\sqrt{15}=100\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-100\sqrt{15}}{2*1}=\frac{-300-100\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+100\sqrt{15}}{2*1}=\frac{-300+100\sqrt{15}}{2} $
| 16x+8+22x-4=30 | | 2z+1=1+2z | | 2z+1=1 | | 5x-6(x+1)=10 | | 3/8a=-6 | | 12x-259=3x-7 | | 6y+4=6y+9 | | 8+3y=y^2 | | 4(q+12)=20 | | 8+2y=y^2 | | (3x-5)+(2x+20)=90 | | 22x-4+16x+8=30 | | 2x+8+4x-4=0 | | 15x5=80+6x+6 | | 11c-3c-6=10 | | -3(y-6y)=-4(2y-y)+2+18y | | 10b+3=9b+3 | | 15-3x(30-7x=25) | | 72/18=x/15 | | 6x^2=25/4 | | (2x-5/7)=4 | | -46-4x=14-10 | | -x3+4x2+19x+14=0 | | 15-3x(30-7x=25 | | L=250m/E | | -4(x+6)+6=6(x+5)+9 | | 37x+2+26x=24 | | 15-3x×30-7x=25 | | E=250m/L | | 6(a-5)+18=2(a-4) | | -2x+7=-4x+9 | | 6x+24-2x=48 |